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1. PRELIMINARY COMMENTS

The interaction between a dynamic system and a non-ideal source of disturbance was
discovered experimentally at the beginning of the century by Sommerfeld [1] and was later
called &&Sommerfeld's e!ect''. The "rst attempt at an analytical research of this phenomenon
was made by Rocard [2] and was published in 1949. In 1953, Blekhman, while investigating
the self-synchronization of unbalanced rotating masses, came to the conclusion that the
vibrating system passes from a resonant to a non-resonant regime in a jump-like manner
[3] (jump phenomenon). In this research, the torque generated by the motor is assumed to
be proportional to the angular velocity of rotation of the rotor. In 1958, Kononenko [4],
while studying the behavior of a dynamic system with single degree of freedom (s.d.o.f.) and
a non-ideal disturbance source, used the static characteristics of the energy source in the
form of a non-linear function of the torque generated by the motor and the angular velocity
of the rotor. For the same dynamic system, in reference [5], the passage through resonance
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was investigated, taking into account its interaction with the non-ideal energy source. The
principles of the theory of vibration of systems with a limited power supply are introduced
in reference [6] in which it is demonstrated that, with a limited driving power, the angular
velocity of the vibrator cannot be a random one; it is determined by the interaction between
the system and the vibrator. The Sommerfeld e!ect (and its properties) in the non-ideal
problem is described in the book by Kononenko [7] entirely devoted to this subject. That
experiment, carried out in 1904, detected all the e!ects of interactions between a non-ideal
motor and its elastic foundation. Several other experiments are mentioned in that same
book and in the one by Nayfeh and Mook [8]. A complete and comprehensive review of
di!erent theories of non-ideal vibrating systems is given in references [9, 10]. An interesting
case occurs when the dynamic system is electromechanical; i.e., when the torque generated
by the motor is determined by the dynamic characteristics of the motion. In references
[11, 12] we analyze the behavior of a mathematical pendulum vibrating in a horizontal
plane suspension point and a non-ideal energy source (DC motor). The relation between the
torque generated by the motor and the angular velocity of the rotor is determined by the
dynamic characteristics of the motor. This problem was proposed before in reference [13].
In reference [14] the authors analyzed possible slip}stick motions of the non-ideal,
self-excitation problem. In references [15}17] the authors analyzed experimentally a shaft
on a console with a DC motor with an unbalanced rotor placed at the free end of the shaft.
The dynamic system includes square and cubic non-linearity. The control of the motor and,
accordingly, the change of the angular velocity are achieved by change of voltage. The
possibility of a controlled passage through resonance in dynamic systems with an ideal
energy source is investigated in the book by Chernousko et al. [18] and the papers by
Nagaya et al. [19], and Wauer [20], in which the control of the vibrations is realized by
switching the elastic components of the suspension structure. In references [20, 21] and
Dimentberg et al. in references [22, 23] examine a controllable passage in a system with an
s.d.o.f. and a non-ideal source of energy. The control of the system is realized by switching
the elastic components in the suspension of the main mass. The dependence of the torque
generated by the motor on the angular velocity of the rotor is determined by the static
characteristics of the DC motor. In reference [24] the authors discussed the optimum design
of an operating curve for a rotating shaft system with a limited power supply using
a gradient-based optimization method. A problem with 2d.o.f. subject to a non-ideal motor
was treated in references [25, 26]. In these works, the authors studied the non-linear
vibrations of a multiple machines portal frame foundations. Two unbalanced rotating
machines are considered, none of them resonant with the lower natural frequencies of the
supporting structure. Their combined frequencies are set in such a way as to excite, due to
non-linear behavior of the frame, either the "rst antisymmetrical mode (sway) or the "rst
symmetrical mode. The physical and geometrical characteristics of the frame are chosen to
tune the natural frequencies of these two modes into a 1 : 2 internal resonance. The problem
is reduced to a 2d.o.f. model. In reference [27] a dynamic system with 2d.o.f., subjected to
a dynamic disturbance with a limited power supply, is investigated. The dependence of the
moment generated by the motor on the angular velocity of the rotor is partly a linear
function. The case in which the parameters of the system are chosen in such a way that the
amplitude frequency characteristic has two resonant peaks and the stationary motion is in
the antiresonance region is analyzed. The parameter space of the moment generated by the
motor in which the system performs subharmonic and quasiperiodic vibrations is
determined. De"ning the parameters at which determinate chaos occurs is a di!erent
research problem.



Figure 1. The problem.
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2. DESCRIPTION OF THE SYSTEM

The model of the vibrating system and the source of disturbance with a limited power
supply is illustrated in Figure 1. The vibrating system consists of a mass m

1
, a linear elastic

spring with a coe$cient of elasticity k
2

and a coe$cient of damping c
1
. On the object with

mass m
1
, a non-ideal power supply source (DC motor) is placed, with a driving rotor of

a moment of inertia J and an eccentrically situated mass m
0

at a distance r from the axis of
rotation. By means of a linear spring with a coe$cient of elasticity k

2
and a damper with

a coe$cient of damping c
2

an object of mass m
2

has been attached to mass m
1
. The

di!erential equations of motion of the system are [27]
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where ¸ is the torque generated by the motor and H (u) is the resisting torque, which will be
ignored from now on, a and b are constant values depending on the type and power of
the motor, and ; (u) is the voltage of the motor. The last equation of the system shows
the dynamic characteristics of the DC motor. The use of the dynamic characteristics is
connected with the non-stationary nature of the processes going on in the vibrating system
and the limited power supply source. Equations (1) include only non-linear members
resulting from the interaction between the vibrating system and the energy source. The
objective of this study is to synthesize optimal control of the passage through the "rst
resonant peak. The presence of non-linear elastic components and non-linear dampers is
not of great signi"cance, and will therefore be ignored. The e!ect of these non-linearities will
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be the topic of another research. In order to simplify the solutions of the equations and the
analysis of the results received we use dimensionless variables, introducing the parameters
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Substituting equations (2) into equations (1) we obtain a system of di!erential equations
which describe the motion of a linear dynamic system with a non-ideal energy source in
dimensionless form
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where the point above the variable indicates di!erentiating in the dimensionless time q.
The system (3) is solved numerically by the method of Runge}Kutta with eighth order of

precision and with an automatic choice of steplength [28]. At the initial time all state
variables are zero and the initial value of the control function is chosen so that in the "nal
moment the system performs a stationary motion at an average angular velocity of the rotor
uN

0
"0.904698.

3. FORMULATION OF THE PROBLEM

The problem of optimal control of the process of passage through resonance of a dynamic
system with a non-ideal power supply is de"ned as follows. The functions s

1
, s

2
, uN , j and

control u (uN ) minimizing the functional I"¹
trans

, satisfying the di!erential equations (3),
and the bound Du (uN ) D)1.0 should be determined in such a way that the dynamic system
could pass from its initial position into a "nal position corresponding to the stationary
motion in the antiresonance region. The objective function I is the time of the transitional
process. Thus formulated, the problem of control of the passage is a problem of terminal
control [29]. A characteristic feature of this type of problems is the imposed limitations on
the "nal position of the controlled system. An auxiliary functional, which characterizes the
measure of deviation of the system from its "nal condition, is introduced so that these
limitations can be observed:

J"pI#q (uN !uN
E
)2, p'0, q'0. (4)

For the solution of the so-formulated problem the class of functions to which the control
should belong is stated in advance, u(uN ). In this study, the governing function belongs to the
multitude of the spline functions of the third order with a continuous second product
S
3,1

(D), D being the multitude of the units of the spline. It is only natural to assume that an
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increase in the number of spline units would lead to an increased precision in determining
the governing function. Unfortunately, this is not true due to the fact that the formulated
problem of optimal control is ill posed. Let us analyze the case in which the multitude of
admissible controls is a functional space with steady metrics,
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v"v(d) can be determined for d'0 such that the uncoupled equation Ds@(q)!sn (q) D(d is
valid for the solutions of the system (3) corresponding to controls u
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by choosing d to be small enough. The ill-posed problem received can be solved by using
Tihonov's method of regularization. According to this method the ill-posed problem is
reduced to minimizing the regularizing functional which has the form [30]

Ra[u]J[u]#aX[u], (5)

where X[u] is a stabilizing functional and a is the parameter of regularization. The type of
the stabilizing functional depends on the particular problem but most often it is assumed to
be
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It depends on the available information on the errors in computing the functional to
determine the optimal parameter of regularization. At large values of the parameter
a a minimum of the regularizing interval is achieved for functions close to constant.

At small values of a the solution is unstable. When lacking information on the gravity of
the errors, a quasioptimal value of the parameter of regularization can be determined by

inf
a;0 KKa

dua
da KK

S3,1(D)

.

4. NUMERICAL ALGORITHM

Various numerical algorithms analyzed in detail in reference [29] have been elaborated
for the solution of the formulated problem of terminal control but they are all based on the
polynomial interpolation of the governing function. The method of local variations [18] is
used in this study to determine the governing function; it has the following advantages: low
sensitivity to the choice of initial approximation; good adaptability to all problems of
optimal control; ease of taking into account all kinds of limitations imposed on the phase
variables and the governing function; high e!ectiveness with additive functionals, although
there is no problem in applying it to other kinds of functionals. The essence of the method of



Figure 2. The amplitude}frequency characteristics of the main mass.
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local vibrations is the following. The interval within which the governing function has been
de"ned is divided into N subintervals (most often with a constant length)

u6
i
"u6

0
#iDu6 , Du6 "(u6

E
!u6

0
)/N, i"0, 1, 2,2 , N,

and the peak points of each subinterval are used as units of the cubic interpolation spline.
Thus, the functional to be minimized is reduced to one functional with N#1 variables, and
the problem of optimal control to a problem of non-linear programming. The values of the
governing function in the units of the spline are the unknown parameters.

5. RESULTS

The governing function minimizing the regularizing function (5) has been determined for
the following parameters of the system: k"0)3, h"0)95, g

1
"0)0, g

2
"0)1, a"0)7,

b"0)7, o"0)2. In this case, the average angular velocity of the rotor in the antiresonance
region is u6

k
"0)9047. The amplitude frequency characteristics of the main mass are shown

in Figure 2. The coe$cients p and q in the expression of the functional have the values:



Figure 3. Transition process versus time.
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p"1)0, q"100)0. The system of di!erential equations is solved with local precision
e6"1)0]10~8. The governing function is de"ned for the interval u6 3[0)0, 1)0]. A stabilizing
functional of the kind

X[u]"P
t1

t0

c
3
(t) (d2u/dt2)2dt, c

3
(t)"1)0

is used to determine the regularized solution. The following procedures for determining
a quasi-optimal value of the parameter of regularization are used. A sequence of values of
the parameter of regularization is assumed in the form of a geometric series a

s`1
"qa

s
,

q"const(1, where a
0

is su$ciently large so that the control function ua0(u) is a constant.
For each element of this sequence, the corresponding control function is determined after
minimizing the regularizing functional Ras`1[ua]"I(ua)#a

s`1
X(ua), s"0, 1, 2, where, for

initial approximation, uas (u) is assumed. Here we take a
0
"1)0, ua0"const"0)6612145 and

q"0)6. In Figure 3 the relation between the time of the transient process, ¹
trans

, and the
parameter of regularization, a, is shown. For a quasi-optimal value, a

opt
"4)70185]10~4 is

taken. The regularized solution is de"ned for spline units n"21. The results from the
minimization of the regularizing functional are illustrated in Figure 4. It can be seen that the
time of the transient process depends mostly on the value of the control function in the
interval (0)7, 1)0). For u (u)"const"0)6612145 (before the beginning of the optimization
process), ¹ "717)956, and after the performed optimization procedure, ¹ "362)121,
trans trans



Figure 4. u versus u.

Figure 5. Displacement versus time (without control) taking u"const"0)6612145 and ¹
53!/4

"719)956.
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Figure 6. Displacement versus time (with control) u"u
opt

and ¹
trans

"362)121.
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i.e., the time of the transient process decreases almost two times. The motions of the main
mass before the optimization process (u(u)"const"0)6612145) and after, for the
quasi-optimal value of the parameter of regularization are shown in Figures 5 and 6.

6. CONCLUDING REMARKS

This paper examined a vibrating system with 2d.o.f., subjected to a power disturbance by
a non-ideal energy source (direct current motor). An optimal law of control of the motor is
synthesized in which the system passes through the "rst resonant peak into the
antiresonance region with minimum amplitude of the main mass. The ill-posed problem is
solved by Tikhonov's method of regularization. The obtained law of control of the process
of passage of a dynamic system with 2d.o.f., including a limited power supply, depends on
the choice of parameters of the system and has to be predetermined should they be altered.
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